Historical aspects of bioaerosols

Aino Nevalainen, Prof Emerita National Institute for Health and Welfare, Finland (THL)

Are dampness and mould new problems?

- Historical documents exist: people have always known that mold is harmful
- building practices and technologies have been developed to avoid moisture intrusion
- after WWII, rapid development of element technologies, materials, industrialization
- moisture control in modern buildings far more difficult than in traditional houses

Leprous plague in the house and what to do about it (Bible)

- The initial responsibilities of the owner and priest are given in Leviticus 14:33-38
- Instructions of what to do after the quarantine of seven days is complete: Leviticus 14:39-42
- Instructions for what happens if leprosy returns to a house after it has been treated: Leviticus 14:43-47

Early studies on indoor air fungi: sources, concentrations, determinants

- Richards (1954). Atmospheric mold spores in and out of doors. J Allergy 25:429-439
 - Outdoor air the main source of indoor fungi
 - In a normal house, indoor molds mainly the same as outdoors but in lower concentrations
 - Concentrations fluctuate seasonally
 - In June-October, Cladosporium most prevalent indoors; rest of year, Penicillium

Early studies on indoor fungi: role of air condition

- Lidwell and WC Noble (1975). Fungi and Clostridia in hospital air: the effect of air-conditioning.
 - Fewer fungi in air-conditioned hospital
 - In naturally ventilated hospitals: fungi originate from outdoors, bacteria from humans
- Hirsch et al. (1978). Effect of central air-conditioning and meteorological factors on indoor spore counts. JACI 62(1):22-26.
 - Lower counts and lower RH in air-conditioned homes
- Ager and Tickner (1983). The control of microbiological hazards associated with air-conditioning and ventilation systems. Ann occup Hyg 27(4):341-358.

Richards (1954) knew the problem of moldy houses:

- In (observably) moldy houses, mold spore content different in constitution and quantity
- "there can be little doubt that in a house which is visibly moldy the residents are exposed to higher concentrations of mold spores than the residents of a normal, clean, dry house"
- Nilsby (1947): 5 cfu/plate in normal vs. 55 cfu/plate in complaint homes

1970ies – respiratory diseases linked with biological dust

- Extensive research on respiratory diseases linked with mold
- E.g. hypersensitivity pneumonitis (allergic alveolitis), farmer's lung, ODTS, others...
- Mainly occupational diseases linked with exposure to moldy hay or other biological dust
- Exposures and mechanisms not well understood
- Note: Cases of similar diseases reported also in association with building dampness and mold although exposure levels much lower

Important moulds causing occupational respiratory allergy (Gravesen et al. 1994)

Allergen source	Environmental exposure	Disease
Alternaria alternata	mouldy logs	wood pulp-worker's lung
Aspergillus clavatus	mouldy malt	malt worker's lung
A. fumigatus	mouldy wood chips mouldy sphagnum	wood chip burner's lung greenhouse lung
A. niger	enzyme	asthma
A. oryzae	acid production	asthma
Botrytis cinerea	mouldy plants	asthma, greenhouse lung
Eurotium rubrum (Aspergillus umbrosus)	mouldy hay	farmer's lung
Penicillium camemberti	cheese production	asthma, cheese worker's lung
P. Communae	mouldy cheese	cheese worker's lung
P. Roqueforti	cheese production	asthma, cheese worker's lung
Rhizopus stolonifer	sawmills	wood trimmer's disease
Scopulariopsis brevicaulis	mouldy tobacco	tobacco worker's disease
Mixed mould populations	ventilation ducts mouldy garbage and compost for recycling humidifiers	waste-handling disease humidifier disease

Moldy buildings started to appear in Europe the 1980ies

- In early 1980ies, studies and management efforts of the problem in Scandinavia, GB and Netherlands
- Results of extensive population studies were reported; consulting needs increased due to individual cases
- In 1990ies, active research on the problem e.g. in Denmark and Finland
- Today, awareness good in Nothern and mid-Europe, less attention in Mediterranean region
- No EU regulations or guidelines; IAQ working groups in action

NAS Institute of Medicine: Damp Indoor Spaces and Health (2004)

- Extensive and thorough evaluation of literature on moisture, exposure, toxicological aspects, prevention and remediation
- Summary of the health effects linked with damp indoor environments
- Existence of problem identified, still many open issues

Dampness and mould – WHO Guidelines for indoor air quality (2009)

- Includes an extensive background review of literature
- Conclusion: dampness and mold harmful, should be prevented
- Qualitative guidance for ventilation and control of moisture and mold
- No numerical guideline values for biological agents
- More specific regional and national guidance recommended
- can be loaded at www.who.int

EU working groups on IAQ

WHO practical guides for IAQ

Canadian guide for fungal contamination

Other countries have given guidance

- Mold guidance follows similar logics everywhere
- No health based numerical TLVs
- Qualitative guidance for elimination and prevention of mold

"Have molds turned more harmful than before?"

- Molds have always been there much before us
- Molds and bacteria have the genetic capacity to produce harmful metabolites once it is needed e.g. to keep a niche or habitat
- Seconday metabolism regulated by conditions
- Modern buildings provide niches that favor certain organisms and induce them to produce toxic metabolites
- Modern indoor environments have their own microbial ecology that is not yet fully understood

Use of buildings has changed

- Modern lifestyles:
 - Use of water increased: laundry, showering
 - Water and sewage piping in every household
 - Maintenance of buildings decreased?
 - Complex architecture and constructions, complex moisture control
 - Tight buildings -> more exposure

NATIONAL INSTITUTE FOR HEALTH AND WELFARE

Part 2: History
Thursday, August 30
8:00 - 8:45 a.m.

Bioaerosols History: Tennessee Building; Autumn 1981

- First air conditioned building in Tennessee (1930s)
- Air washer system
- Three outbreaks of humidifier; each associated with activation of water sump-air washer system.

Tennessee Building (Continued)

- April 1981. Client occupies building; AC on
- September 18, 1981. AC system turned off; Stagnant water in sumps increases to room temperature
- September 21, 1981. AC system turned on; First outbreak of HP occurs as warm water used in air-washer system.

Tennessee Building (Continued)

- Three outbreaks of acute HP occurred; Outbreaks occurred after AC system with stagnant, warm (70° - 80°F) water turned on
- Building was vacated after third outbreak of acute HP

Tennessee Building (Continued)

- Slime observed on baffle plates of both air-washer systems
- Slime on decking of AC units and floor of MER
- Numerous fungi, bacteria, protozoa and nematodes found in "Slimes"

Tennessee Building; What Did I Learn?

- The qualitative inspection was more useful than sampling
- Operate the HVAC system correctly
- Listen to the HVAC engineer; when the dew point temperature and the dry bulb temperature are about equal (e.g., both at about 72°F), you have indoor cloud formation and a great opportunity for microbial growth.

Bioaerosols History: AIA Symposium; San Francisco November 9, 1984; Engineering Preventive Measures

- Repair all external and internal leaks promptly and permanently
- B. Eliminate the use of water spray systems

Biogerosols History: AIA Symposium; November 9, 1984

- C. Remove stagnant water and slimes from building mechanical systems
- D. Use steam as a moisture source in humidifiers
- E. Relative humidity in occupied spaces and in low velocity plenums should not exceed 70%

Bioaerosols History: AIA Symposium; November 9, 1984

- F. Discard microbially damaged materials
 - Porous contents that are contaminated: Better to discard; do not attempt disinfection
 - Dirty insulation on HVAC airstream surfaces should be discarded
 - Minimize aerosolization of respirable particulate during clean-up

Biogerosols History: AIA Symposium; November 9, 1984

- G. Use filters with a 50% rated efficiency (dust spot); air cleaners should not emit ozone into HVAC airstream
- H. Provide at least 20 and 5 CFM of outdoor air per occupant for smoking and non-smoking environments, respectively

Bioaerosols History: ACGIH Committee; April 1986

- Remedial actions include the following: Remove biofilms, do not use cool mist vaporizers, keep indoor RH below 70% and discard porous building materials visually contaminated with fungi
- Additional samples should be taken to document if remedial actions were effective

Biogerosols History: ACGIH Committee; April 1986

- Sampling Strategy: Identify the source of selected airborne microorganisms so that effective corrective actions may be undertaken
- Data Interpretation: If the total count in the affected person's area exceeds 10,000 per M³, proceed to remedial actions

Applied Industrial Hygiene, 1986 R-19 to R-23

Bioaerosols History: ACGIH Committee; Sept. 1987

- Emphasis was still on sampling. In cases where positive evidence exists for diseases related to biologic contamination (HP, allergic asthma) – Bioaerosols sampling should be undertaken
- The 10,000 total count per M³ is gone

Applied Industrial Hygiene, 1987 R-10 to R-16

Biogerosols History: ACGIH Committee; Sept. 1987

- Data interpretation. There are no published standards of risk associated with exposure to saprophytic bioaerosols
- Rank order assessment recommended as method to evaluate contribution of outdoor air to indoor bioaerosols
- Still too much emphasis on sampling.

Bioaerosols History: The Florida Courthouses, 1991-1996

- See Jarvis & Morey, Applied Occupational & Env. Hyg., 16, 380-388, 2001
- See Hodgson et al., Journal of Occupational Env. Health 40, 241-249, 1998

The Florida Courthouses: What Did We Learn?

ONE PROBLEM

- Low permeance vinyl wall covering placed on inside surface of exterior wall in air-conditioned building in warm, humid climate.
- Moisture migrates from humid outdoor air into envelope wall. Especially if building is negatively pressurized to outdoor air.
- Condensation and mold growth occur at vinyl wallcovered surface

The Florida Courthouses: What Did We Learn?

Bioaerosols History: What Else Did We Learn?

This courthouse contained about 20,000 M² of visible mold, much of which was hidden.

Bioaerosols History: What Else Did We Learn in the Florida Courthouses?

Containment of remediation dusts is essential

Bioaerosols History: What Else Did We Learn in the Florida Courthouses?

HEPA Vacuum cleaning is essential to remove surface (residual) dusts